
Object Oriented Programming
Examples class 2

December 2021
Professor Andrew Rice

These slides are on the course website if you want to follow along.
(Some of the code is necessarily smaller than ideal for presenting.)

1

Chime exercise improvements

[FEEDBACK] The Matrices task is a little bit weird. We're asked to
implement a rotation2D matrix that presumably rotates shapes and
points in the anti-clockwise direction. The TextDrawing.plot method
takes in a matrix with height 2 with the following specification
"Elements in row 0 are y co-ordinates, elements in row 1 are x
co-ordinates". This is a y-x column vector rather than an x-y column
vector, so theoretically the matrix should not be the same as the
rotation matrix used for an x-y column vector. But it turns out that it
is the latter that is correct rather than the former, because the
TextDrawing.plot method does not use the Cartesian coordinate
system -> y increases in the downwards direction. So you have to
substitute y with -y, and 'cancels' out the effect of using a y-x
column vector: i.e. you can use the same matrix you would use with
an x-y column vector and a Cartesian coordinate system. This took
me quite a while to figure out and it might be helpful to clarify it in
the problem description.

2

Too far off topic (sorry)

Is it possible to cover
threads and parallel
processing in java for
the next examples
class?

Good news! You do this in depth next year in
Concurrent and Distributed Systems and the Further
Java course.

3

Too far off topic (sorry)

Is it possible to cover
threads and parallel
processing in java for
the next examples
class?

Good news! You do this in depth next year in
Concurrent and Distributed Systems and the Further
Java course.

Great news! I co-wrote and co-teach Further Java.

4

Too far off topic (sorry)

Is it possible to cover
threads and parallel
processing in java for
the next examples
class?

Good news! You do this in depth next year in
Concurrent and Distributed Systems and the Further
Java course.

Great news! I co-wrote and co-teach Further Java.

Changing news! I'm not teaching it next year so the
course might change.

5

Errors in the notes

Why are LinkedList offer
and poll methods O(log
n)? Aren't they just add
and remove methods in
disguise?

You are right. They should be
O(1) and I got it wrong on the
handout.

6

C++ pointers

Are pointers allocated on
the stack or heap in c++?
Please explain for
example int* p=new int;

7

8

...

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

8

9

...

4

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

9

10

...

4

0x3411
int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

An asterisk on a type means
'pointer'

An ampersand on a r-value
means 'take the address of'

An ampersand on a type
means '(C++) reference'

10

11

...

4

0x3411

0xE001

?????

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

p3

'new' means 'on the heap'.
This is true in Java too...

Note the lack of brackets...
we are not calling a
constructor because this is
not an object. Can't do this
in Java.

11

12

...

4

0x3411

0xE001

4

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

p3

An asterisk on a variable
means dereference (follow
pointer)

12

13

...

4

0x3411

0xE001

4

?????

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE002

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

p3

p4

p4 points to something on
the heap and the thing it
points to is another pointer
which in turn points to an int.

p4 is an pointer to a pointer
to an int.

13

14

...

4

0x3411

0xE001

4

0x3411

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE002

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

p3

p4

14

15

...

4

0x3411

0xE001

4

0x3411

int p1 = 4;
int* p2 = &p1;
int* p3 = new int;
*p3 = p1;
int** p4 = new int*;
*p4 = p2;

0xE002

0xE001

0xE002

0x3411

0x3412

0x3413

0x3414

p1

p2

p3

p4

**p4 == 4

15

...

pair 0x......

4

0x......

<Pair>

0x......

0x......

"apples"

"oranges"

<double[]> len=2

first

second

1.0

i

d

2.0

Java is more restrictive

Java C++

Objects Heap only Stack or Heap

Primitives Stack only
or on heap as field
of an object
or array element

Stack or heap

References /
Pointers

Can only
reference heap

Can point
anywhere

16

Abstract classes and interfaces

Difference in uses of
abstract class and
interfaces

Abstract class Interface

Multiple
inheritance

No Yes

Inherit code Yes Yes (default
methods)

Inherit state
(fields)

Yes No (there is no
state)

Inherit type Yes Yes

17

Comparable is a good example of an interface
class College implements Comparable<College> {
 private final String name;
 private final int foundingYear;

 College(String name, int foundingYear) {
 this.name = name;
 this.foundingYear = foundingYear;
 }

 public String name() { return name; }

 public int foundingYear() { return foundingYear; }

 @Override
 public int compareTo(College other) {
 return Comparator
 .comparing(College::name)
 .thenComparing(College::foundingYear)
 .compare(this, other);
 }
} 18

Comparable is a good example of an interface

List<College> colleges = ...
Collections.sort(colleges);

19

Comparable is a good example of an interface

public class Collections {
 // ...
 public static <T extends Comparable<? super T>> void sort(List<T> list) {
 // ...
 }
}

T must implement Comparable<? super T>

For example, if T == College then it can implement
● Comparable<College>
● Comparable<Object>

20

class College implements Comparable<Object> {
 private final String name;
 private final int foundingYear;

 College(String name, int foundingYear) {
 this.name = name;
 this.foundingYear = foundingYear;
 }

 public String name() { return name; }

 public int foundingYear() { return foundingYear; }

 @Override
 public int compareTo(Object other) {
 return Comparator
 .comparing(Object::toString)
 .compare(this, other);
 }
}

List<College> list = ...
College c1 = list.get(0);
College c2 = list.get(1);
if (c1.compareTo(c2) < 0) {
 // ...
}

21

Collection is a good example of default methods

Collection specifies some methods which can be

a) widely used
b) built by calling other methods in collection..no state is needed...

default boolean removeIf(Predicate<? super E> filter) {
 Objects.requireNonNull(filter);
 boolean removed = false;
 final Iterator<E> each = iterator();
 while (each.hasNext()) {
 if (filter.test(each.next())) {
 each.remove();
 removed = true;
 }
 }
 return removed;
}

22

Calendar is an example of an abstract class

Calendar contains state and a lot of functionality

But there are details that vary between calendars

Subclasses for GregorianCalendar and JapaneseImperialCalendar

Creates close coupling of implementations

Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.YEAR, foundingYear);
calendar.add(Calendar.DAY_OF_YEAR, -1);
Date time = calendar.getTime();

23

Extra content on UML

24

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

Any line means 'some relationship'

25

Open arrow means Association or 'knows about'

Uni-directional

Bi-directional (arrow
heads sometimes
omitted)

Reflexive

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

26

Numbers indicate multiplicity

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

0..1

1

0..1

27

You can also indicate role

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

0..1

1

0..1
head

current

next

28

Solid diamond means Composition or 'owns a'

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

0..1

1

0..1
head

current

next

When the instance of LinkedList
is destroyed so is the Node

29

Empty diamond means Aggregation or 'has a'

Library

...

Book

...

...

...

Shelf

...

...1..*

0..*

If the Shelf goes away the Book
will still exist

30

Empty triangle means Generalisation or 'extends'

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

0..1

1

0..1
head

current

next

AbstractList

...

...

31

Dashed open triangle means Realises or 'implements'

LinkedList

...

+push(Object o) : void
+pop() : Object

Node

-Object value

...

0..1

1

0..1
head

current

next

AbstractList

...

...

<<List>>

...

32

UML Example: decorator pattern

try (BufferedReader r =
 new BufferedReader(
 new FileReader("/tmp/andy.txt"))) {
 String line;
 while ((line = r.readLine()) != null) {
 System.out.println(line.toUpperCase());
 }
}

33

Decorator pattern <<interface>>
Reader

+read():int

FileReader

+read():int

AbstractReader

- reader : Reader

#AbstractReader(Reader)
+read():int

BufferedReader

-buffer:char[]

+BufferedReader(Reader)
+read():int
+readLine():String

Component

ConcreteComponent

Decorator

StateDecorator
and
FunctionDecorator

34

Singleton Pattern

CreditCardProcessor

- instance : CreditCardProcessor

- Instance()
+ getInstance() : CreditCardProcessor
+ charge(CreditCard,int) : boolean

Singleton

35

Singleton Pattern Does a dependency injection
framework resolve most/all of
the controversy surrounding
singletons? Are there other
problems with singletons?

Problems

Restricts you to a single instance and a single implementation

Relies on global state (the static field)

Violates single-responsibility principle

I would argue these are all problems. The controversy is about how bad they are
for your program compared to alternative approaches

36

Dependency injection
public class Timer {

 private final Clock clock;
 private Instant startTime;

 Timer() {
 this.clock = Clock.systemUTC();
 }

 void start() {
 startTime = clock.instant();
 }

 Duration elapsed() {
 return Duration
 .between(startTime,
 clock.instant());
 }
}

public class Timer {

 private final Clock clock;
 private Instant startTime;

 Timer(Clock clock) {
 this.clock = clock;
 }

 void start() {
 startTime = clock.instant();
 }

 Duration elapsed() {
 return Duration
 .between(startTime,
 clock.instant());
 }
}

37

Dependency Injection Framework
@Singleton
public class Timer {

 private final Clock clock;
 private Instant startTime;

 @Inject
 Timer(Clock clock) {
 this.clock = clock;
 }

 void start() {
 startTime = clock.instant();
 }

 Duration elapsed() {
 return Duration
 .between(startTime,
 clock.instant());
 }
}

class TimerModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Clock.class)
 .toInstance(Clock.systemUTC());
 }
}

Injector injector =
 Guice.createInjector(new TimerModule());
Timer t1 = injector.getInstance(Timer.class);
//...
Timer t2 = injector.getInstance(Timer.class);

Not examinable

38

Singleton Pattern with Dependency Injection Framework

Problems

Restricts you to a single instance and a single implementation
Solved through use of different modules and different injectors

Relies on global state (the static field)
Solved through use of (multiple) instances of injectors

Violates single-responsibility principle
Solved through use injection framework managing lifecycle

But: new problems created...e.g. hard to understand control flow of object
instantiation, cycles in your graph will cause crashes at runtime

39

Course summary

How to write a 'good'
program

Testability, Dependency
injection, Immutability,
Open-closed principle, Design
patterns

How to write a Java program

Access modifier rules, extends,
implements, abstract classes, interfaces,
static, final, unit testing framework

OOP Concepts

Abstraction, Encapsulation, Inheritance,
Polymorphism, UML

40

